skip to main content


Search for: All records

Creators/Authors contains: "Gavin, Daniel G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Tropical peatlands in Southeast Asia cover ∼25 million hectares and exert a strong influence on the global carbon cycle. Recent widespread peatland subsidence and carbon dioxide emissions in response to human activity and climate change have been well documented, but peatland genesis remains poorly understood. Unlike coastal peatlands that established following sea-level stabilization during the mid-Holocene, inland peatlands of Borneo are little studied and have no apparent environmental constraint on their formation. Here, we report radiocarbon dates from the Upper Kapuas Basin which show inland peat formation since at least 47.8 thousand calibrated radiocarbon years before present, ka. We provide a synthesis of new and existing peat basal dates across Borneo, which shows a hiatus in peat genesis during a cool and dry period from 30 to 20 ka. Despite likely peat degradation during that period, the Upper Kapuas is still exceptionally deep, reaching a maximum depth (determined from coring) of 18 m. Our best estimate of mean peat depth over 3833 km2of the Upper Kapuas is 5.16 ± 2.66 m, corresponding to a carbon density of 2790 ± 1440 Mg C ha−1. This is one of the most carbon-dense ecosystems in the world. It withstood the glacial-interglacial climate transition and remains mostly intact, but is increasingly threatened by land-use change.

     
    more » « less
  2. Abstract

    Amazonian Dark Earths (ADEs) are unusually fertile soils characterised by elevated concentrations of microscopic charcoal particles, which confer their distinctive colouration. Frequent occurrences of pre-Columbian artefacts at ADE sites led to their ubiquitous classification as Anthrosols (soils of anthropic origin). However, it remains unclear how indigenous peoples created areas of high fertility in one of the most nutrient-impoverished environments on Earth. Here, we report new data from a well-studied ADE site in the Brazilian Amazon, which compel us to reconsider its anthropic origin. The amounts of phosphorus and calcium—two of the least abundant macronutrients in the region—are orders of magnitude higher in ADE profiles than in the surrounding soil. The elevated levels of phosphorus and calcium, which are often interpreted as evidence of human activity at other sites, correlate spatially with trace elements that indicate exogenous mineral sources rather than in situ deposition. Stable isotope ratios of neodymium, strontium, and radiocarbon activity of microcharcoal particles also indicate exogenous inputs from alluvial deposition of carbon and mineral elements to ADE profiles,  beginning several thousands of years before the earliest evidence of soil management for plant cultivation in the region. Our data suggest that indigenous peoples harnessed natural processes of landscape formation, which led to the unique properties of ADEs, but were not responsible for their genesis. If corroborated elsewhere, this hypothesis would transform our understanding of human influence in Amazonia, opening new frontiers for the sustainable use of tropical landscapes going forward.

     
    more » « less
  3. null (Ed.)
    Abstract. Holocene climate reconstructions are useful for understanding the diversefeatures and spatial heterogeneity of past and future climate change. Herewe present a database of western North American Holocene paleoclimaterecords. The database gathers paleoclimate time series from 184 terrestrialand marine sites, including 381 individual proxy records. The records spanat least 4000 of the last 12 000 years (median duration of 10 725 years)and have been screened for resolution, chronologic control, and climatesensitivity. Records were included that reflect temperature, hydroclimate,or circulation features. The database is shared in the machine readableLinked Paleo Data (LiPD) format and includes geochronologic data forgenerating site-level time-uncertain ensembles. This publicly accessible andcurated collection of proxy paleoclimate records will have wide researchapplications, including, for example, investigations of the primary featuresof ocean–atmospheric circulation along the eastern margin of the NorthPacific and the latitudinal response of climate to orbital changes. Thedatabase is available for download at https://doi.org/10.6084/m9.figshare.12863843.v1 (Routson and McKay, 2020). 
    more » « less
  4. Explanations for areas of endemism often involve relative climatic stability, or low climate velocity, over time scales ranging from the Pleistocene to the late Cenozoic. Given that many narrowly endemic taxa in forested landscapes display discrete habitat associations, habitat stability should be similarly important for endemic persistence. Furthermore, while past climate variability is exceedingly difficult to quantify on millennial time scales, past distributions of habitats may be robustly inferred from paleoecological records. The Olympic Peninsula, Washington, supports a biota with several insular features including 29 endemic plant and animal taxa. Here I present the geographic distribution and habitat of the endemic taxa, and then examine the vegetation stability of the past 14,300 years from five pollen records associated with discrete vegetation zones on the peninsula. I show that 11 endemics have distributions centered on dry alpine scree and rock in the northeastern quadrant of the peninsula, and nine occur in shaded riparian forests in the southwest. Vegetation turnover during the post-glacial period was smallest in these areas. However, another long pollen record from the western peninsula reveals existence of shrub tundra and greatly reduced forest cover, indicating southward displacement of shaded riparian habitats by perhaps as much as 100 km. Although this study supports an association of postglacial vegetation stability with endemism, records spanning the glacial maximum indicate widespread tundra during long periods of the late Pleistocene and therefore suggest southern displacement of forest-associated endemics. While some of the alpine scree-associated endemics may have persisted in situ, many others likely arrived via a variety of dispersal trajectories. These histories include dispersal from southern refugia towards ocean barriers preventing further northward dispersal, contraction from more widespread distributions, and recent divergence from sister taxa. This study shows that paleoecological records can cast strong doubt on the inference that areas of endemism necessarily imply in situ glacial survival. 
    more » « less